Tractor Pulling on Data Warehouses

Martin L. Kersten
CWI Amsterdam
mk@cwi.nl

Anisoara Nica
Sybase, An SAP Company
Waterloo, Canada
anica@sybase.com

ABSTRACT

Robustness of database systems under stress is hard to quan-
tify, because there are many factors involved, most notably
the user expectation to perform a job within certain bounds
of the user requirements. Nevertheless, robustness of database
system is very important to end users. In this paper we
develop a database benchmark suite, inspired by tractor
pulling, where robustness is measured as a system’s abil-
ity to process data despite a continuous increase in system
load, as defined in terms of data volume, query volume and
complexity. A functional evaluation is performed against
several systems to highlight the benchmark capabilities.

Categories and Subject Descriptors

H.2.4 [Database Management|: Systems—Query Pro-
cessing; H.2.7 [Database Management|: Database Ad-
ministration—Data warehouse and repository

General Terms

Experimentation, Measurement, Performance, Reliability

Keywords

Benchmark, Robustness, SQL, TPC, Data Warehousing, Trac-

tor Pulling, Dagstuhl
1. INTRODUCTION

Its roots dating back to the 1860’s, tractor pulling is a
contemporary motorsport competition that requires a farm
tractor to pull a heavy sledge along a 100 meter (about 300
feet) track. As the sledge is pulled down the track over a
prepared soil the sledge weight, which is linked to the sledge
wheels, is transferred from its rear axles towards its front
axles. A pan, which essentially is a metal plate, is located in
front of the rear wheels of the sledge. As the weight moves
toward the front pan the resistance builds. The further the
tractor pulls the sledge, the harder it gets. The winner is the
tractor that can pull the sledge the farthest without blowing
up. Besides the pure horse power of the tractor the success
of a tractor pulling team depends on the team mechanics to
prepare the tractor for a specific track, and on the driver to
steer the tractor.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DBTest ’11 June 13, 2011 Athens, Greece

Copyright 2011 ACM 978-1-4503-0655-3/11/06 ...$10.00.

Alfons Kemper
TU Miinchen
kemper@in.tum.de

Meikel Poess
Oracle Corporation
Redwood Shores, California
meikel.poess@oracle.com

Volker Markl
TU Berlin
Volker.Markl@tu-
berlin.de

Kai-Uwe Sattler
lImenau Univ. of Technology

kus@tu-ilmenau.de

Database Management Systems (DBMSs) are like trac-
tors when it comes to supporting large information systems.
Users demand database systems to lift a heavy weight for
a long time without breaking down. As tractors they come
in several brands, allow for adjustments of the software and
hardware to deal with the soil specifics, and are expected
to provide proper service for a long time. However, not all
DBMSs are the same in performing their task. The service
provided differs considerably in many details and user sat-
isfaction is at stake due to hickups in the engine itself. As
the driver of a tractor often has to go under the hood to
remove dust, stones, dirt, and use the oil can to make sure
the system is up to the job, database administrators have
to maintain the data warehouse continuously to guarantee
service level agreements.

These differences make the selection of a DBMS for a par-
ticular task difficult. In many cases this is tackled by call-
ing for proof-of-concept implementations at the client site
by vendors, to rerun user workloads, or to extrapolate from
public benchmarks. Such benchmarks, such as TPC-H [2] for
analytical workloads and TPC-C [1] for transactional work-
loads, have been used for decades to stress test products as
well as to compare systems and system configurations. How-
ever, it is a well-known fact that either approach tells little
about the robustness of the system for the task at hand. A
slight change in environment may render a system useless,
or at least not behave as expected.

System robustness is a leading criteria in the design of
modern information systems. It comes in many flavors,
which share the semantics that a) a system behaves as ex-
pected, and b) minor changes in the system parameters, the
query workload, or the database content do not lead to large
response time variances among identical jobs. The former
is often hard to quantify in practice, unless one focuses on
a system component for which a theoretical model could be
identified to capture the intended behavior. For example,
checking the robustness of a cost-based optimizer can be
described by a mathematical model.

To improve our knowledge about system robustness we de-
signed a novel way to exercise database systems against the
functional requirements of large data warehouses inspired by
the tractor pulling game. Compared to simple stress tests
and performance benchmarks the Tractor Pulling suite takes
a more holistic approach, where the robustness follows the
variance analysis to quantify objectively robustness. There-
fore, an essential component in the setup is to identify a
metric to assess the performance evolution during a single

run, and to amortize the information obtained from several
runs using different system brands or slightly adjusted pa-
rameter settings. The main contributions of this paper can
be summed up by:

e The Tractor Pulling suite provides a framework for
defining different track characteristics representing dif-
ferent models for testing robustness.

e The suite is formulated to systematically evaluate a
system against an increasingly complex workload in
an automatic way.

e The parameter space for comparison of intra- and extra-
solutions is defined with a metric to enable relative
comparisons of the solutions provided with a particu-
lar focus on robustness.

e The suite is run against several platforms for sanity
checks and as a frame of reference for taking it further.

The suite is designed for portability as a set of scripts
using simple SQL queries. The provided SQL queries are
merely examples of queries that could be used in a robust-
ness benchmark rather than claiming to be the best and
only queries. Future work might identify a representative
set of queries or it might reveal that specific instantiations
of the tractor suite need to be tailored for specific appli-
cation domains. Hooks are provided to turn the suite into
brand specific versions, which may include gearing advice
and DBA advice in general.

2. TRACTOR PULLING SUITE

In this section we will describe the Tractor Pulling suite in
more details. The tracks are paved with an increasing work-
load using a particular database soil. The DBMS to support
the workload can be fine-tuned to derive best-practice advice
to increase robustness of the solution.

2.1 The Workload Track

The tractor suite is built around tracks composed of a se-
ries of workloads {W () }i—o,~v where the length of the work-
load sequence is limited to an a priori defined parameter N.
Each workload W (3) is a tuple
W (i) = (S(2), L(i), Pre(), ary(s), tQ(), Q(0), Post(i), db(s))
which contains a list of operations to change the database
schema S(7), perform the (bulk)- load L(z) and run a query
batch Q(7). The database size is increased at the beginning
of each track by creating a new table, which constitutes the
largest table in the database thus far, its size being defined
by the function db(7). The function is expected to be mono-
tonically increasing.

Likewise the global function Q(¢) determines the query
load at the track i, i.e. the queries to be processed. We en-
sure that workload query set (i) of W (%) is fully contained
in the query set Q(i + 1) of the track workload W1, and
that each query in Q(7) will produce the same answer when
run during the track ¢ + 1. This is achieved by gradually
increasing the domain range from which values are drawn.
It creates several strata covering different key values. This
way, we can quantify robustness of individual queries in light
of an increasingly complex world they run into at each track.
The queries are described below in Section 2.3.

The components Pre(i) and Post(i) encapsulate the DBA
knowledge, such as gathering statistics and building indexes
before queries Q(i) are executed, and post actions such as

garbage collecting temporary storage or performing informa-
tion feedback into the optimizer based on observed behavior.
By using Pre(i) we are closer to the real world case, where
the system needs steering to keep performing as before, once
negative deviations from expected behavior occur.

2.2 The Data Warehouse Soil

The database at the time of the track W; is derived from
the workload W;_; incrementally using the global functions
db(7). The initial size db(0) ensures that the table Ro(Ko, Bo)
created at the track 0, contains a few hundred thousand tu-
ples that comfortably fit in main memory of the system, but
the database size will quickly leave this performance-wise
preferred resource setting as a new table is added at each
step. The size for the newly created table at track ¢ can be
obtained in various ways with widely different performance
and robustness issues. In the initial approach each workload
step starts with creation of a new table using bulk loads.
This reflects a common use in business intelligence applica-
tions, where a daily bulk load of transactional data precedes
a lengthly analysis and reporting phase. For simplicity of the
database soil, we assume all columns to be defined over the
same ordered domain. Values for all columns K;, Bo, ..., B;
are taken from {integer, float, timestamp, varchar}. Switch-
ing between these scalar types is likely to demonstrate dif-
ferent behavior, as more complex functions are called in the
inner loop of most algorithms. Focusing on one type at the
time helps identifying the culprit for degradation.

The key range for the column R;.K; is a dense sequence
from [I(¢), h(?)) which mimics the growing trans”-actional
database. A stress test can be performed by shuffling the
key values before the bulk load, but that would merely add
a constant cost for the DBMS to sort the load files before
actual loading commences.

The database instance at track 7 is obtained by adding a
new table R;(K;,Bo,...,B;). The new table R; is loaded
with the following data (see Equations 2 and 3): (1) all
tuples from the table R;_1 which are extended with an ex-
tra column R;.B; filled by randomly selecting values from
R;_1.K;_ following a Zipfian distribution; and (2) db(i) new
tuples where unique key values for R;.K; are taken from the
range [I(¢), h(7)), with [(¢) = h(: — 1). This key distribution
leads to a database built around independent strata.

This extension process is iterated, to create a growing
number of tables with a growing size for each database in-
stance at track i. By construction, each new payload column
R;.Bj can be used to join with the key column R;.K; with
j < t. Thus each database instance can be considered to
model a data warehouse with R; as the fact table and its
columns R;.Bj,j =0, ...,i— 1, as foreign keys to the dimen-
sion table R;.Kj.

Formally, we construct a new table R; for the database
instance of the workload Wj as follows: Let () and h(i) de-
note the minimum and maximum key ranges for R;.K;. Let
key(R;,1(t), h(i)) denote drawing of a unique integer num-
ber in the range [I(4), k(7)) that does not yet exist in the key
column R;.K;. Let zipf(R;) and uniform(R;) denote a Zip-
fian and a uniform draw of numbers, respectively, from the
values of the column R;.K;. Equations 1, 2, and 3 describe

how the new table is being populated at each track.
db(0)

Ro(Ko, Bo) = U (key(Ro,1(0), h(0)), uniform(Ro)) (1)
Jj=1

)

]
=]
5

Figure 1: The Tractor Data Soil at Track k&

R1(K1, Bo, B1) = {(k, b, zipf(Ro))|(k,b) € Ro} U @)
U {(key(Ra, h(1),1(1)), zipf(Ro), zipf(R1))}

R;(K;, Bo, ..., B;) =
{(k, bo, ey bir, 2ipf(Ri—1))| (k. o, s bic1) € Rica}U
Us2D {(key(Ri, (i), h(3)), zipf(Ro), ..., zipf(Ri)) }
(3)
Figure 1 illustrates the database evolution and the com-
mon parts between each instance.

2.3 The Query Load

Pulling the sledge over the field is comparable to run-
ning queries against a database and observing their behav-
ior. Our test suite consists of a query mix Q(7) derived from
a limited class of simple yet representative data warehouse
queries. With each step in the workload we augment the
query set such that all tables including all their data are
accessed at that time. While the benchmark progresses, the
complexity of the query mix increases subject to the size of
the query load |@Q(7)|. The construction of the database con-
tent ensures that we don’t need an exhaustive list of queries.

The robust query processing can be defined as the ability
of a system to maintain constant response time in the face of
slightly changing query parameters [3]. In particular, selec-
tivity estimation underlying most cost-based optimizers are
considered a major source for robustness failures. This phe-
nomenon is represented by parameterizing the queries with
a Zipfian distributed range constraint, one that favors small
ranges over large ones.

The second complicating factor for query optimization is
the complexity structure of a query, e.g. how many join
predicates are being used, subqueries, and sort-based group-
ing and aggregation. For each database a seemingly un-
bounded collection of query templates can be conceived. In
practice, however, just a few dozen of structural different
queries are characteristic for a DBMS application. More-
over, the query complexity is inversely related to their use
as simple queries are much more prevalent then large and
complex queries.

The Tractor Pulling suite is based on a slowly increasing
collection of queries to be run. At each track W (4) we extend
the previous query batch Q(i — 1) with new query instances
following the templates defined in ¢Q(4). This way we can
observe the stability of a query batch as the database and

query load increases. The Tractor Pulling query template
tQ(i) is based on the following generic i-way join queries:

SELECT Ro.Bo, . RZB»L, count(*), an(Ro.Bo),
an(R1.B0), an(R1.B1),. “ ey an(Ri.Bo), e

FROM Ry, ..., R;

WHERE selectpattern(Ro, . . .

GROUP BY Ro.Bo,...,R:.B;

ORDER BY Ry.Bo, ..., Ri.B;

, R;) AND joinpattern(Ro, ..., R;)

The select pattern is a sequence of range bounds over the
key attributes, e.g. R;.B; >= X AND R;.B; < Y where
X <=Y and forms a Zipfian distribution range. The join
pattern is a conjunct of equijoin predicates referencing the
key columns R;.K;. We consider the following four classi-
cal query templates defined in tQ(%) = {lg:, cyqi, sqi,clg; }:
linear, cycle, star, and clique queries. The order of the equi-
join predicates in the WHERE clause is purposely random-
ized to detect the query optimizer’s ability to guard against
predicate order. Care should be taken in the generation of
the selection predicates. Taking random ranges over all at-
tributes would render most queries empty. Therefore, the
range is picked from the last strata added, e.g., for Q(4)
the range is taken from [I(4), h(4)) which ensures that all
other tables can be access through the foreign key relation-
ship R4.B; — R;.K; with j < 4. The key ranges are again
Zipfian distributed over the range [[(4), h(4)). The aggre-
gate operations in the templates provide an upper bound.
For each query instance we select a few by Zipfian sampling
the possible aggregate function terms.

At each track i, the set of queries to be run is defined by
Q) = Q-1 U4 {glq a query instance from tQ(0)},
i.e., the previous workload Q(z—1) is augmented with qry(z)
more queries instantiated from the template tQ(4); the num-
ber of new queries at each step is defined by the function
gry(i) which is an input to the benchmark.

3. TRACK CHARACTERISTICS

A DBMS is a multi-layer resource system with widely dif-
ferent performance characteristics. Databases as small as
the CPU L-2 cache are not common, yet, their behavior will
largely be determined by the software coding robustness.
At the other extreme, we have multi terabytes database oc-
cupying hundreds of disks, where the bandwidth to access
relevant data becomes a hindrance. Evaluation of the sys-
tems calls for a specification of the workload tracks and its
relationship with the tractor’s capabilities. This is done by
varying the global functions db, defining the size of the new
table, and ¢ry, defining the number of new queries, added
at each step 7. We introduce the notion of a landscape to
demonstrate different database workloads which can be cre-
ated from this general workload description W (7).

db, the number of new rows for the new tables, is varied
by the initial table size db(0) and its growth rate constant
g. The function db(i) = g X i X db(0), Vi > 0 determines the
number of rows in the new table at step i (see Equation 3):
|Ri| = [Riwa| +g x i X |Ro| = db(0) X (149 X3, ,7) =
= db(0) x (1 +g x (ZGF)).

The size, in bytes, of the table R; is |R;|x the size of its
row which depends of the chosen domain for the columns
Ki, Bo, ..., B;. We will use the notation dom to denote the
size of the domain of the columns used in the benchmark.

The total database size at step i, DB(4), can be calculated
as
DB() = Yo [B| x ((j + 1) x dom) = i (db(0) x (1+
g x (ZUE0Y) x ((j +1) x dom).

Assessing system robustness under increasing query work-
load can be achieved by controlling the function gry. The
query batch Q(i) for each track should be large enough to
exercise the system in many ways. Typically, the query
load within each step should be hundreds of query instances,
which are fired against the system in single- or multi-user
mode. We foresee that even single user behavior will high-
light robustness issues. A multi-user load merely creates
excessive competition for resources which is a major source
for performance variances. The query workload can be char-
acterized by the number of queries and joins executed per
query in each step 3.

A workload W; is run in sequence against a DBMS without
interruption until it finishes, get stalled due to limitations in
its configuration, or blows up the engine. Using the workload
for a performance characterization, albeit interesting for an
entertainment perspective, is not our prime objective. In
terms of robustness, a slow but predictable system and a
fast one are considered the same.

We describe below a set of possible scenarios which can be
defined using our benchmark framework. These landscapes
were used to run the Tractor Pulling benchmark against
some database systems (Section 5 presents the results).
Hills. The Hills scenario models a data warehouse that
grows with a modest growth rate of g € (0,1) (e.g., g = 0.2).
It starts out from a main-memory focus until it overflows
into a few disks. It will highlight a system’s robustness to
deal with the memory-disk performance chasm. Starting
from a small table Ry of the size d% of the tractor’s RAM,
it increases linearly with an ascend of g:

d € (0%, 100%), g € (0,1)

Number of connections at track ¢ : 1

db(0) = (d x RAM) x (

db(i) = g x i x db(0)

qry(0) =1, qry(i) =

QM) =144
For an initial d = 30% and g = 0.2, already at step ¢ = 1
the database size DB(1) is closed to 50% of the tractor’s
RAM. The query load is modestly growing as well. At each
track, one query instance for each template in tQ(7) is added
(in total 4 more queries), and the new query batch Q(i) is
executed serially using one connection. Hence, at track i,
|Q(7)] = 144 x . Although it is a relatively slow slope, it
emphasizes the capabilities of the system to handle rather
complex queries for modest database sizes.
Meadows. The Meadows scenario stresses the system be-
havior focusing on a modest increase in complexity of the
query workload, while keeping the new tables number of
rows constant.

d € (0%,100%), g =0, C > 1

Number of connections at track i : C

db(0) = (d x RAM) x (

db(i) =0

qry(0) =0, gry(i) = C

Q)| =1+C x1i

The new queries for each track may be chosen to be biased
towards a certain type of queries, e.g., clique queries (see
Figure 2(b) experiment where only clique queries were used).

m) (4)
4

m) (5)

Rockies. The Rockies illustrates the system behavior of
steep climbing of the database size, emphasis complex queries,
and an increased number of connections at each new track.
At each track ¢, 4 x i queries are added, i query instances
for each template in tQ(%).
d € (0%, 100%), g € (0,10)
Number of connections at track i : ¢
db(0) = (d x RAM) x (
db(i) = g x i x db(0)
qry(0) =1, gry(i) =i x 4
Q) = 1+4x (LF2)

4. ROBUSTNESS METRICS

In this section we introduce the Tractor Pulling robustness
metrics, which leads to a n-way characterization focused on
different system components. Robustness of a DBMS can
describe several qualities, e.g., it does not break down easily
by a single application failure, it recovers quickly from sys-
tem failures, or faults in the code do not bring the system
to a grinding halt. Robustness depends on many param-
eters (hardware, DBMS, etc.) and, therefore, cannot be
expressed in a single number. Furthermore, it could have
different meanings, e.g., constant elapsed times for identi-
cal queries while the database grows or a degraded response
time while data volume are increased. Because it is hard to
quantify the degree of expected degradation the smoothness
of the gradient maybe used as an indicator for robustness.

Robustness is strongly related to the variance from user
expectations. This implies that robustness is primarily a rel-
ative factor of the system against past behavior. In this con-
text, we consider robustness as predictable load and query
behavior of the system under changing environments. For
data loading it means that we expect a linear behavior as
more data is added to the database. For query processing
— which is the main focus of the tractor pulling suite — this
means that repetitive execution of a query should show little
response time variations.

k) o

4.1 Performance Characteristics

The basis for our robustness metrics is formed by the wall-
clock response times observed for the components of W;. In
particular, we are interested in the stability of the system
under growth. The workload sequence is organized such that
the same query is run against increasingly larger database.
The database is set up in such a way that the same answer
set is produced regardless the workload step. This means
that we can check robustness against pure errors in query
processing, but, more importantly, illustrates possible degra-
dation beyond our expectation that a good system would
provide consistent response time while its state changes.

4.2 Robustness Fingerprint

For ease of comparison amongst different tractor property
settings and pulls, we propose a possible robustness vector

Robust(N) = (L, S,Q0,QE,{QOk }r—o,n, {QFEk }k=o,n, H)

which depicts the performance characteristics for an N-way
tractor pulling. Its components are defined as follows:

e Load L(N): the sample standard deviation of the load
times.

e Storage S(N): the sample standard deviation of the
disk storage size.

Statistic Description
ti1(i),i>0 Elapsed time to complete load operation at track ¢
bs(i), 1 >0 the total storage increased, in bytes, after the load operation at track ¢
tqo(t),i >0 optimization time for all queries at track ¢
tqe(1),1 >0 execution time for all queries at track ¢
tqo(i,k),4 > k,k > 0 optimization time at track 4, for the queries added at step k: AQ(k) = Q(k) \ Q(k — 1).
tqe(i,k),i > k,k >0 execution time at track ¢, for the queries added at step k: AQ(k) = Q(k) \ Q(k — 1).
tw(i),7 >0 Elapsed time to complete the workload W; at track ¢
Table 1: Statistics collected during Tractor Pulling Suite
Metrics Description

Elapsed time difference of load time between track ¢ and i — 1
Mean of all load elapsed time differences

Load robustness metrics

Elapsed time difference of query execution between track ¢ and i — 1
Mean of all query execution elapsed time differences

Query execution robustness metrics

Elapsed time difference of between track ¢ and i — 1
Mean of all elapsed time differences

Holistic robustness metrics

Table 2: Robust(N) Metrics Formulas:

e Query optimization QO(N): the sample standard de-
viation of query optimization times.

e Query Ezecution QE(N): the sample standard devia-
tion of query execution times.

e Query optimization QOk(N): the sample standard de-
viation of query optimization times for the queries
added at track k.

e Query execution QER(N): the sample standard de-
viation of query execution times (excluding the opti-
mization time) for the queries added at track k. This
robustness measure and QO (N) depict the behaviour
of the new queries added at track k, i.e. Q(k)\Q(k—1),
when run as part of the later workload W () i >= k.

e Holistic H(N): the sample standard deviation of to-
tal execution time of the tracks. The total execution
time of the track W; includes any Pre(i) and Post(1)
activities.

The Holistic robustness is calculated from the observed wall-
clock times over all the steps in the tractor pulling. The vari-
ance from the trend is derived to capture the robustness.
Ideally, the system is not susceptible to increasing work-
load. While running the tractor pulling benchmark with NV
tracks, the statistics shown in Table 4.1 are collected in or-
der to compute Robust(N) metrics. Each robustness metrics
is then computed as the sample standard deviation of the
statistics vector as defined in Table 4.2.

S. EVALUATION

As an example implementation of the benchmark we pro-
vide an open source package that can be downloaded from
sourceforge'. The package consists of the data and query
generator, tpgen, as well as a set of system-specific run
scripts tprun. The workload generator tpgen creates, for

"https://sourceforge.net/projects/tractorpulling/

sample standard deviation of delta vectors

given input benchmark parameters, the SQL DDL to create
the schema, the data files to be loaded into the database, the
scripts to load the data, and the SQL queries to be executed
against the schema. The tprun script plays the role of the
tractor’s driver: loads the data, runs the queries, and collects
the benchmark statistics (e.g., execution times). The open
source package is already customized for major database sys-
tems and it can be further supplemented by instance-specific
maintenance tasks such as index creation.

5.1 Tractor Pulling Experiments

In this section, we describe preliminary experiments done
using Tractor Pulling benchmark for a set of database sys-
tems, where the Tractor Pulling implementation was used
to define interesting landscapes. Our goal is to obtain first-
use experiences with this initial implementation and draw
some conclusions of how to further evolve the benchmark
and develop new robustness metrics.

Figure 2 plots three benchmark runs on three different
systems, using landscapes described in Section 3. All three
systems experience sudden drops in performance at track 8,
track 25, and track 40, respectively, which can be explained
by how the landscapes are defined.

The Tractor Pulling suite with the Rockies landscape was
run on System X with d = 0.06, g = 0.2, once for N = 49
and second run for N = 63. The original database size
was very small comparing to the available RAM such that
the database size reached the size of RAM around the track
40. The experiment stressed the query execution under in-
creased query workload and number of connections: there
are 1+4 x (@) queries run at track i, where the number
of concurrent connections is i. Figure 2(c) plots the exe-
cution times for N = 49, {tqe(x,k)}r=049. The computed
robustness metrics for these two runs are:

Robust(49) =
(L(49) = 11.14, QE(49) = 50.001, H(49) = 51.43)

8000 T

ey
H\,_,/* /)\GM w0
7000

1600

1400 ol

e

L |
eecooe

6000

W 3

qry-6 —e— 0
5000 -

4000

el
el
el

X
(.34

1200 -

(/S\'/W \(\:,{ 1000 |

800

EEEEEE T

e
e
el
el
el

3000 -

2000 -

1000 — n

0 ! ! I ! . 2R+

et

0 5 10 15 % P 28

(a) System Z on Hillsd = 20, g = 0.2,C =1, (b)
N =24 =

s 1B B

4, N =49

® o on 2

""!9-*"'

e

System W on Meadows d = 20, g = 0,

5

600 -

(._. 400

5
Sombuna

555

\4/‘\\ iwf

!" 200 F
ED '\' ‘%/ 2
‘;\ I e > 3!'
4 0 Lexane " muiuwa‘ﬂ L L e
7 ¥ A BB T NN LN 0 & 10 15 20 2 30 35 40 45 50
(c) System X on Rockies d = 0.06, g = 0.2,
C =1, N=49

Figure 2: X-axis: the track number; Y-axis: the elapsed time for {tsc(z,k)}r=0,n

where 4 (7) € [0.188,1593.59] and ¢, (i) €
0<i<49.

Robust(63) =

(L(63) = 3.54, QE(63) = 12758.65, H(63) = 12758.36)
where t4. (i) € [0.175, 154386.83] and ¢., (i) €
0<¢<63.

These preliminary experiments show that the sample stan-
dard deviation metrics must be interpreted in the context
of the range of values observed during the benchmark, and
also that a larger N is expected to give larger metrics.

[1.73,1698.525],

6. SUMMARY AND FUTURE WORK

The writing of this paper was triggered by intense dis-
cussions at the Dagstuhl 2010 workshop on Robust Query
Processing [3]. Although many seem to agree that robust-
ness of a DBMS is a qualitative measure for deviance against
expected behavior, there is no formal definition of DBMS ro-
bustness to date. Consequently there are little concrete tech-
niques on how to measure it in practice. With the Tractor
Pulling suite, developed in this paper, we provide a frame-
work for defining robustness benchmarks. Its parameterized
approach allows for exploring various dimensions of system
robustness, such as database size, query workload and multi-
user access. The database size can be varied in terms of
number of rows, tables and columns per table. The work-
load can be increased in terms of the number of queries,
complexity of queries and various level of multi-user access.
Hence, the Tractor Pulling suite can be seen as a major
step towards a standard way for quantitative assessment of
DBMS robustness. As part of the tractor pulling suite we
defined 4 metrics, Load, Storage, Query Optimization and
Query Execution. Each of these metrics use the standard
deviation as a relative measure between tracks. They are
indicative for monitoring how robust systems are with in-
creases in incremental data load, the overall database size
and the query workload complexity.

To demonstrate the Tractor Pulling suite, we defined four
sample instantiations of it: Hills, Meadows, and Rockies and
conducted experiments on three systems, System X, Z and
W. Each of these landscapes stresses different abilities of a
system. The Hills landscape highlights a system’s robust-
ness to deal with the memory-disk performance chasm. It
starts from a database that resembles a fraction of a system’s

[0.723, 154441.453],

main memory and increases the database size linearly at a
modest rate. The Meadows landscape stresses a system’s
ability to deal with a modest increase in complexity of the
query workload while increasing the database size consider-
ably. The results of our experiments reveal that each system
shows significant performance drops at a certain number of
tracks, which can be observed with the metrics defined in
our paper.

In future work we will concentrate on two key areas. Firstly,
we will further investigate which Tractor Pulling Suite pa-
rameters define the most representative landscapes in terms
of customer usage of current DBMSs. Secondly, we will in-
vestigate the possibility of a single robustness metric. The
individual metrics, defined in this paper, are very indicative
for how systems behave under increased workloads. In or-
der to judge whether a system is robust in a more holistic
approach, we need to combine these metrics into one sin-
gle metric. This metric can also be used to quantitatively
compare the robustness of multiple releases of the same sys-
tem or different systems or even take monetary costs into
account, which are needed to achieve a given robustness.
The definition of a set of landscapes and one metric will,
ultimately, lead to the definition of a benchmark for mea-
suring DBMS robustness with concrete parameters for the
database soil, the tracks and the queries and also formal
execution rules and metrics.

Acknowledgements.

The authors wish to thank the participants, especially the
workshop organizers, of the Dagstuhl 2010 workshop on Ro-
bust Query Processing [3] for their inspiration and advice.

7. REFERENCES

[1] Transaction Processing Performance Council. TPC-C -
On-line Transaction Processing Benchmark.,
http://wuw.tpc.org/tpcc/, 2011.

Transaction Processing Performance Council. TPC-H -
Ad-hoc, Decision Support Benchmark.,
http://wuw.tpc.org/tpch/, 2011.

G. Graefe, A. C. Kénig, H. A. Kuno, V. Markl, and K.
Sattler. Robust Query Processing — Summary and
Abstracts Collection, number 10381 in Dagstuhl
Seminar Proceedings, Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, Germany, 2011.

